Tahun ini lab Bioindustri dapat hibah pengajaran untuk mata kuliah Bioindustri sehingga dilakukan rapat untuk merencanakan program kuliah yang akan dilakukam.
dalam rapat diputukan bahwa sistem pengajaran mencakup:
1. Tugas terstruktur (25%) : sebanyak 8 tugas (laporan dan presentasi)
2. Praktikum (20 %) : 4 acara
3. Studi kasus (15 %) : 2 kasus sebelum dan sesudah UTS
4. Quiz (10 %) : Tiap kali kuliah
5. UTS (15 %)
6. UAS (15 %)
Pembagian Materi Kuliah:
1. Pendahuluan - WJT
2. Bahan Baku - WJT
3. Bakteri - WJT
4. Khamir - WJT
5. Kapang - NHT
6. Penyiapan Kultur - NAF
7. Kultr Batch - NAF
8. Kultur fed-batch dan Kontinyu - NAF
9. Fermentasi substrat padat - IRN
10. Fermentasi substrat cair - IRN
11. Fermentor - IRN
12. Pemurnian Produk - NAF
13. Pengembangan produk - NHT
14. Pemasaran produk - NHT
Demikian rencana kuliah, jika ada komentar atau saran dipersilahkan.
Kamis, Agustus 30, 2007
Rabu, Agustus 29, 2007
STaf Lab yang Tugas belajar
Saat ini staf lab bioindustri yang tugas belajar ada dua yaitu:
Bu Hindun menempuh S3 di TIP FTP Unibraw Malang.
Bu Neneng menempuh Master di Environmental Management School of Geography Planning and Architecture The University of Queensland.
Seluruh staf dosen dan laboran mengucapkan selamat belajar semoga sukses selalu
Bu Hindun menempuh S3 di TIP FTP Unibraw Malang.
Bu Neneng menempuh Master di Environmental Management School of Geography Planning and Architecture The University of Queensland.
Seluruh staf dosen dan laboran mengucapkan selamat belajar semoga sukses selalu
Selasa, Agustus 28, 2007
Pengukuhan Guru Besar Bu Trisye
Pada Hari Senin Pak Wigf dan Pak Nur berangkat ke Jogja untuk menghadiri pengukuhan Guru besar Prof.Dr.Ir. Endang Sutriwati Rahayu di UGM dalam bidang Mikrobiologi Pangan dengan pidato pengukuhan:Prospek Bakteri Asam Laktat Hasil Rekayasa Genetika Di Bidang Industri Pangan".
Selamat buat Bu Trisye dari kami semua.
Selamat buat Bu Trisye dari kami semua.
Jumat, Agustus 24, 2007
Jus Tomat probiotik
Pada hari Jum'at 24 Agustus 2007 Bu Nia dibanti Yuli dn dua siswa SMK yang sedang PKL melakukan penyuluhan dalam rangka pengabdian ipteks di Desa DAU.
penyuluhan mengenai pembuatan jus tmat probiotik agar tomat yang kita minum selain menyegarkan dan kaya vitamin juga mempunyai muatan probiotik yaitu bakteri yang baik bagi saluran pencernaan kita.
semoga masyarakat yang mendapat penyuluhan mampu memanfaatkan sehingga apa yang telah disampaikan tidaklah sia-sia
selamat buat Bu Nia
semoga makin banyak karyanya.
penyuluhan mengenai pembuatan jus tmat probiotik agar tomat yang kita minum selain menyegarkan dan kaya vitamin juga mempunyai muatan probiotik yaitu bakteri yang baik bagi saluran pencernaan kita.
semoga masyarakat yang mendapat penyuluhan mampu memanfaatkan sehingga apa yang telah disampaikan tidaklah sia-sia
selamat buat Bu Nia
semoga makin banyak karyanya.
Kamis, Agustus 23, 2007
Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts
Michael Pester1 and Andreas Brune
The ISME Journal advance online publication, 2 August 2007
http://www.nature.com/ismej/journal/vaop/ncurrent/abs/ismej200762a.html
Abstract
The key role of free hydrogen in the digestion of lignocellulose by wood-feeding lower termites and their symbiotic gut microbiota has been conceptually outlined in the past decades but remains to be quantitatively analyzed in situ. Using Reticulitermes santonensis, Zootermopsis nevadensis and Cryptotermes secundus, we determined metabolite fluxes involved in hydrogen turnover and the resulting distribution of H2 in the microliter-sized gut. High-resolution hydrogen microsensor profiles revealed pronounced differences in hydrogen accumulation among the species (from <1 kPa to the saturation level). However, flux measurements indicated that the hydrogen pool was rapidly turned over in all termites, irrespective of the degree of accumulation. Microinjection of radiotracers into intact guts confirmed that reductive acetogenesis from CO2 dominated hydrogen consumption, whereas methanogenesis played only a minor role. Only negligible amounts of H2 were lost by emission, documenting an overall equilibrium between hydrogen production and consumption within the gut. Mathematical modeling revealed that production dominates in the gut lumen and consumption in the gut periphery for R. santonensis and Z. nevadensis, explaining the large accumulation of H2 in these termites, whereas the moderate hydrogen accumulation in C. secundus indicated a more balanced radial distribution of the two processes. Daily hydrogen turnover rates were 9–33 m3 H2 per m3 hindgut volume, corresponding to 22–26% of the respiratory activity of the termites. This makes H2 the central free intermediate during lignocellulose degradation and the termite gut—with its high rates of reductive acetogenesis—the smallest and most efficient natural bioreactor currently known.
Keywords: hydrogen turnover, metabolite fluxes, methanogenesis, quantitative degradation model, reductive acetogenesis, symbiosis
The ISME Journal advance online publication, 2 August 2007
http://www.nature.com/ismej/journal/vaop/ncurrent/abs/ismej200762a.html
Abstract
The key role of free hydrogen in the digestion of lignocellulose by wood-feeding lower termites and their symbiotic gut microbiota has been conceptually outlined in the past decades but remains to be quantitatively analyzed in situ. Using Reticulitermes santonensis, Zootermopsis nevadensis and Cryptotermes secundus, we determined metabolite fluxes involved in hydrogen turnover and the resulting distribution of H2 in the microliter-sized gut. High-resolution hydrogen microsensor profiles revealed pronounced differences in hydrogen accumulation among the species (from <1 kPa to the saturation level). However, flux measurements indicated that the hydrogen pool was rapidly turned over in all termites, irrespective of the degree of accumulation. Microinjection of radiotracers into intact guts confirmed that reductive acetogenesis from CO2 dominated hydrogen consumption, whereas methanogenesis played only a minor role. Only negligible amounts of H2 were lost by emission, documenting an overall equilibrium between hydrogen production and consumption within the gut. Mathematical modeling revealed that production dominates in the gut lumen and consumption in the gut periphery for R. santonensis and Z. nevadensis, explaining the large accumulation of H2 in these termites, whereas the moderate hydrogen accumulation in C. secundus indicated a more balanced radial distribution of the two processes. Daily hydrogen turnover rates were 9–33 m3 H2 per m3 hindgut volume, corresponding to 22–26% of the respiratory activity of the termites. This makes H2 the central free intermediate during lignocellulose degradation and the termite gut—with its high rates of reductive acetogenesis—the smallest and most efficient natural bioreactor currently known.
Keywords: hydrogen turnover, metabolite fluxes, methanogenesis, quantitative degradation model, reductive acetogenesis, symbiosis
Selasa, Agustus 14, 2007
Jadi Yuri LKTI SMA di UMM
Pak Nur dipercya oleh Jurusan THP UMM untuk menjadi yuri pada lKTI tingkat SMA/SMK/MA tingkat nasional di UMM pada hari senin 13 Agustus 2007. Acara dilakukan dalam rangkak program PHK A2 THP UMM.
Jumat, Agustus 10, 2007
Pelatihan Sistem Mutu
Pada tanggal 7 sampai dengan 9 agustus, bu Hindun, Bu Atifah dan pak Nur ikut pelatihan di Lab pangan.
Tanggal 7 tentang Metode kalibrasi peralatan uji proksimat yang diberikan oleh Bapak Surackmad dan Pak Ganngsar dari Balai Pengujian Sertifikasi Mutu barang Surabaya.
Tanggal 8 pelatihan implementasi sistem mutu lab oleh bu Bintang
Tanggal 9 Workshop proses akrediatasi lab oleh bu Bintang
Tanggal 10 Pak nur dan Bu Hindun ikut asistensi penyusunan panduan mutu lab.
Tanggal 7 tentang Metode kalibrasi peralatan uji proksimat yang diberikan oleh Bapak Surackmad dan Pak Ganngsar dari Balai Pengujian Sertifikasi Mutu barang Surabaya.
Tanggal 8 pelatihan implementasi sistem mutu lab oleh bu Bintang
Tanggal 9 Workshop proses akrediatasi lab oleh bu Bintang
Tanggal 10 Pak nur dan Bu Hindun ikut asistensi penyusunan panduan mutu lab.
Senin, Agustus 06, 2007
Tempe Gembus 3
"Menurut peneliti dari Lembaga Eijkman Herawati Sudoyo, pada kondisi tertentu bakteri itu memang bisa tumbuh di produk lain. Penelitian Meng dkk di China menunjukkan, B cocovenenans ditemukan di tepung jagung yang difermentasi serta jamur putih (Tremella faciformis) yang membusuk.
Herawati menjelaskan, racun B cocovenenans, yaitu asam bongkrek dan toksoflavin, menghambat rantai respirasi pada mitokondria sehingga produksi Adenosine triphosphate (ATP) terganggu dan energi bagi sel tidak terbentuk. Akibatnya, sel jaringan tubuh rusak. Hal itu tampak dari hasil otopsi korban yang menunjukkan kegagalan multiorgan. Gejala klinis keracunan asam bongkrek sama seperti yang diderita para korban, yaitu pusing, mual, muntah, kemudian meninggal.
Kasus keracunan gembus atau bongkrek, dalam sejarah sosial kita, mengindikasikan satu kecenderungan yang konstan: kemiskinan.
Namun, supaya tetap ilmiah, Lembaga Biologi Molekuler Eijkman masih akan mengidentifikasi DNA bakteri itu."
regards,
ardy
sumber kompas.com edisi 2 agustus 2007
Herawati menjelaskan, racun B cocovenenans, yaitu asam bongkrek dan toksoflavin, menghambat rantai respirasi pada mitokondria sehingga produksi Adenosine triphosphate (ATP) terganggu dan energi bagi sel tidak terbentuk. Akibatnya, sel jaringan tubuh rusak. Hal itu tampak dari hasil otopsi korban yang menunjukkan kegagalan multiorgan. Gejala klinis keracunan asam bongkrek sama seperti yang diderita para korban, yaitu pusing, mual, muntah, kemudian meninggal.
Kasus keracunan gembus atau bongkrek, dalam sejarah sosial kita, mengindikasikan satu kecenderungan yang konstan: kemiskinan.
Namun, supaya tetap ilmiah, Lembaga Biologi Molekuler Eijkman masih akan mengidentifikasi DNA bakteri itu."
regards,
ardy
sumber kompas.com edisi 2 agustus 2007
Jumat, Agustus 03, 2007
Rapat lab Bulan Agustus
pada tanggal 1 kemarin, lab mengadakan rapat bulanan. dalam rapat disepakati:
1. Pembuatan pedoman praktikum bioindustri dan Teknologi Mikrobial
2. Pembuatan materi pelatihan
3. pelaporan kegiatan laboratorium dari laboran ke kalab
pedoman praktikum disesuaikan dengan materi kuliah diharapkan selesai sebelum kuliah dimulai.
ada tambahan? komentar?
1. Pembuatan pedoman praktikum bioindustri dan Teknologi Mikrobial
2. Pembuatan materi pelatihan
3. pelaporan kegiatan laboratorium dari laboran ke kalab
pedoman praktikum disesuaikan dengan materi kuliah diharapkan selesai sebelum kuliah dimulai.
ada tambahan? komentar?
Kamis, Agustus 02, 2007
STUDIES ON THE TOXINS OF PSEUDOMONAS COCOVENENANS
Fatal food poisonings have repeatedly occurred amongst the natives of the densely populated parts of Mid-Java in Indonesia. These were caused by the eating of coconut-products (bongkrek) that had been inoculated with moulds (Rhizopus oryzae). A study of the background of these poisonings was made round about 1930. An extensive investigation brought to light the fact that sometimes a bacterium developed instead of the mould with which the defatted coconut was inoculated and this secreted a very active poison. This bongkrekic bacterium was identified as belonging to the genus Pseudomonas and it got the name Pseudomonas cocovenenans. The toxic compound, bongkrekic acid, was isolated from cultures of this microorganism on moist, defatted copra. This isolation was worked out by using extraction procedures followed by thin layer chromatography or liquid-liquid chromatography on Sephadex. The concentration of bongkrekic- acid at the different phases of isolation was determined by measuring the UV- absorption or the antibiotic activity against Cladosporium cucumerinum.
sumber: http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=AD0431819
sumber: http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=AD0431819
Tempe gembus beracun?
JAKARTA (KR) - Menteri Kesehatan Siti Fadilah Supari mengungkapkan, ‘penyakit misterius’ yang menjangkiti warga Dusun Beran dan Pete Desa Kanigoro Kecamatan Ngablak Magelang diduga kuat akibat bakteri pseudomonas cocovenenans yang berkembang biak dalam tempe gembus.
”Menurut informasi, mereka makan tempe gembus, makanya yang banyak kena itu ibu-ibu. Bapaknya sedang kerja. Kemungkinan besar keracunan itu disebabkan tempe gembus,” kata Menkes kepada wartawan di Depkes Jl HR Rasuna Said Kuningan Jakarta Selatan, Selasa (31/7).
Selain tempe gembus, kata Menkes, ada beberapa dugaan yang menyebabkan kematian warga di sana, yakni keracunan logam seperti arsen, cadmium, cromium serta keracunan bahan biologis. ”Dugaan keracunan logam masih perlu pemeriksaan lebih lanjut,” ujarnya.
Dirjen Pengendalian Penyakit dan Penyehatan Lingkungan (P2PL) I Nyoman Kandun juga mengatakan, keracunan disebabkan bakteri pseudomonas cocovenenans. ”Bakteri itu tidak hanya hidup di tempe bongkrek, tetapi juga di tempat lain seperti di tempe gembus. Kasus ini baru kali ini. Tetapi ini belum definitif, masih pemeriksaan lebih lanjut tentang logam berat dan insektisida,” tambahnya.
Dugaan keracunan tempe gembus di Magelang adalah yang pertama kali di Indonesia. Menurut informasi, korban di Dusun Beran dan Dusun Pete membeli tempe pada 21 Juli 2007 sebelum akhirnya KLB merebak pada keesokan harinya, tanggal 22 Juli 2007.
Kepala Dinkes Jawa Tengah Hartanto mengatakan pihaknya sudah memberikan pelatihan pada produsen tempe gembus bagaimana membuat produk yang aman. Hal ini dilakukan untuk mencegah kejadian serupa terulang lagi.
”Kita minta menggunakan alat-alat yang tidak menggunakan logam seperti kuali dan tampah. Itu sudah kami lakukan di lokasi produsen tempe gembus. Mereka juga diminta membuat tempe dengan tangan yang bersih,” jelasnya.
sumber: www.kr.co.id
”Menurut informasi, mereka makan tempe gembus, makanya yang banyak kena itu ibu-ibu. Bapaknya sedang kerja. Kemungkinan besar keracunan itu disebabkan tempe gembus,” kata Menkes kepada wartawan di Depkes Jl HR Rasuna Said Kuningan Jakarta Selatan, Selasa (31/7).
Selain tempe gembus, kata Menkes, ada beberapa dugaan yang menyebabkan kematian warga di sana, yakni keracunan logam seperti arsen, cadmium, cromium serta keracunan bahan biologis. ”Dugaan keracunan logam masih perlu pemeriksaan lebih lanjut,” ujarnya.
Dirjen Pengendalian Penyakit dan Penyehatan Lingkungan (P2PL) I Nyoman Kandun juga mengatakan, keracunan disebabkan bakteri pseudomonas cocovenenans. ”Bakteri itu tidak hanya hidup di tempe bongkrek, tetapi juga di tempat lain seperti di tempe gembus. Kasus ini baru kali ini. Tetapi ini belum definitif, masih pemeriksaan lebih lanjut tentang logam berat dan insektisida,” tambahnya.
Dugaan keracunan tempe gembus di Magelang adalah yang pertama kali di Indonesia. Menurut informasi, korban di Dusun Beran dan Dusun Pete membeli tempe pada 21 Juli 2007 sebelum akhirnya KLB merebak pada keesokan harinya, tanggal 22 Juli 2007.
Kepala Dinkes Jawa Tengah Hartanto mengatakan pihaknya sudah memberikan pelatihan pada produsen tempe gembus bagaimana membuat produk yang aman. Hal ini dilakukan untuk mencegah kejadian serupa terulang lagi.
”Kita minta menggunakan alat-alat yang tidak menggunakan logam seperti kuali dan tampah. Itu sudah kami lakukan di lokasi produsen tempe gembus. Mereka juga diminta membuat tempe dengan tangan yang bersih,” jelasnya.
sumber: www.kr.co.id
Rabu, Agustus 01, 2007
Waste Definition and Classification
Sri SuhartiniPostgraduate student in The University of Queensland
There are many definitions of waste. According to McBean, et al. (1995), “Waste is a material that is cheaper to throw away than to use”. Furthermore, the Western Australian Government Department of Environmental Protection (2001) defines, “Wastes are (i) any substance that is discarded, emitted, or deposited in the environment in such volume, constituency or manner as to cause an alteration in the environment; (ii) any discarded, rejected, unwanted, surplus or abandoned substance; and (iii) any otherwise discarded, rejected, unwanted, surplus or abandoned substance intended for sale or for recycling, reprocessing, recovery, or purification by a separate operation from that which produced the substance.”
In addition, the types of wastes vary depending on their physical characteristics, components, and effects. According to Cutarao (2006), wastes, based on their physical characteristics, can be divided into “Solid wastes which are domestic, commercial and industrial wastes especially common as co-disposal of wastes (e.g. plastics, styrofoam, containers, bottles, cans, papers, scrap iron, and other trash; and liquid wastes which are in liquid form (e.g. domestic washings, chemicals, oils, wastewater from ponds, manufacturing industries, and other sources).” From their components, wastes can be characterized into two groups, “bio-degradable which can be degraded (e.g. paper, wood, fruits and others) and non-biodegradable which cannot be degraded (e.g. plastics, bottles, old machines, cans, styrofoam containers, and others).” Based on their effects on human and environment, wastes can be classified as “hazardous wastes, which are dangerous for commercially, industrially, agriculturally, or economically use, and non hazardous wastes, which are secure for commercially, industrially, agriculturally, or economically use.”
Numerous literatures define and divide solid wastes into different categories. Gottinger (1991, 3) defines solid wastes as “any garbage, refuse, sludge from a waste treatment plant, or air pollution control facility, and other discarded material resulting from industrial, commercial, mining and agricultural operations, and community activities.” Similarly, Tchobanoglous, et al. (1993, 3), add that solid wastes are all the wastes produced by human and animal activities which are solid and are discharged as unwanted.
It is clear that the solid waste quantity and composition (or component) is different in all societies, both in developing countries (e.g. Indonesia) and developed countries (e.g. Australia). Wahono, and Sahwan (1998), for example, state that the major compositions of solid wastes in major Indonesian cities (e.g. Jakarta, Bandung, and Semarang) are organic materials. This is supported by Tchobanoglous, et al. (1993) who mention that the distribution of components of residential municipal solid waste is typically different among countries, whereas developing countries produce more organic wastes than developed countries. Similarly, in companies or industries, the major composition of solid wastes is paper and paperboard wastes.
Clearly, there are many factors affecting the differences on solid waste composition. According to Bilitewski, et al. (1996, 3), these differences are caused by many factors, such as “level of consumption, production and packaging; standard of living; type of residence (yard space; degree of self-sufficiency); local conditions; and type and capacity of waste and recyclables containers.” Additionally, Rhyner, et al. (1995) add that the changes in product design, packaging materials, and buying habits have also changed the waste composition. This is also supported by Gupta, et al. (1998, 101) who found that the waste composition are depend on many factor such as “food habits, cultural tradition, lifestyles, climate and income etc”, which are found across all country around the world.
Obviously, solid wastes resources in all communities’ levels in developing countries (e. g. Indonesia) are quite similar with developed countries (e.g. Australia). In general, sources of solid wastes in a community are defined as “residential, commercial, institutional, industrial, and municipal services” (Tchobanoglous, et al. 1993, 40 and McBean, et al. 1995, 8) and “agricultural, construction and demolition, and treatment and plant sites which are depending on land use and zoning.” (Tchobanoglous, et al. 1993, 40) (see Table 2). Based on this figure, wastes resources in all level of society are generally similar, whereas wastes generation are relatively varied among these resources. For instance, in developed country, such as Australia, wastes are generated from agricultural (e.g. rice husks, macadamia shells, animal slurries, bagasse from sugar cane and timber mill residues), commercial and industrial, and household (BCSE 2005, 3).
Therefore, the main constituents of solid wastes are similar all over the world. However the quantity, the density and the proportion of these wastes generally vary among industries, countries, and communities, depending on the economic development level, geographic location, technology, and social conditions. These differences will lead to different approach on handling these waste problems.
References
Bilitewski, B., G. Hardtle, K. Marek, A. Weissbach, and H. Boeddicker. (1996), Waste Management, Springer, Berlin.
Gottinger, H. W. (1991), Economic Models and Applications of Solid Waste Management, Gordon and Breach Science Publisher, New York.
Gupta, S., and T. G. Lizon. 2004. Technical assistance (co-financed by the Canadian cooperation fund on climate change) to the Republic of Indonesia for the gas generation from waste project. Asian Development Bank. Retrieved September 9, 2006, from http://www.asiandevbank.org/Documents/TARs/INO/tar-ino-36557.pdf
McBean, E. A., F. A. Rovers, and G. J. Farquhar. (1995), Solid Waste Landfill Engineering and Design, Prentice Hall HTR, New Jersey.
Rhyner, C. R., L. J. Schwartz, R. B. Wenger, and M. G. Kohrell. (1995), Waste Management and Resource Recovery, Lewis Publishers, New York.
Tchobanoglous, G., H. Theisen, and S. Vigil. (1993), Integrated Solid Waste Management: Engineering Principles and Management Issues, McGraw-Hill, Inc, New York.
Wahono, S. and F. L. Sahwan. (1998). Indonesia: Solid waste composting trends and projects. BioCycle, 39, 64-68. Retrieved September 9, 2006, from Proquest Academic Research Library Database.
There are many definitions of waste. According to McBean, et al. (1995), “Waste is a material that is cheaper to throw away than to use”. Furthermore, the Western Australian Government Department of Environmental Protection (2001) defines, “Wastes are (i) any substance that is discarded, emitted, or deposited in the environment in such volume, constituency or manner as to cause an alteration in the environment; (ii) any discarded, rejected, unwanted, surplus or abandoned substance; and (iii) any otherwise discarded, rejected, unwanted, surplus or abandoned substance intended for sale or for recycling, reprocessing, recovery, or purification by a separate operation from that which produced the substance.”
In addition, the types of wastes vary depending on their physical characteristics, components, and effects. According to Cutarao (2006), wastes, based on their physical characteristics, can be divided into “Solid wastes which are domestic, commercial and industrial wastes especially common as co-disposal of wastes (e.g. plastics, styrofoam, containers, bottles, cans, papers, scrap iron, and other trash; and liquid wastes which are in liquid form (e.g. domestic washings, chemicals, oils, wastewater from ponds, manufacturing industries, and other sources).” From their components, wastes can be characterized into two groups, “bio-degradable which can be degraded (e.g. paper, wood, fruits and others) and non-biodegradable which cannot be degraded (e.g. plastics, bottles, old machines, cans, styrofoam containers, and others).” Based on their effects on human and environment, wastes can be classified as “hazardous wastes, which are dangerous for commercially, industrially, agriculturally, or economically use, and non hazardous wastes, which are secure for commercially, industrially, agriculturally, or economically use.”
Numerous literatures define and divide solid wastes into different categories. Gottinger (1991, 3) defines solid wastes as “any garbage, refuse, sludge from a waste treatment plant, or air pollution control facility, and other discarded material resulting from industrial, commercial, mining and agricultural operations, and community activities.” Similarly, Tchobanoglous, et al. (1993, 3), add that solid wastes are all the wastes produced by human and animal activities which are solid and are discharged as unwanted.
It is clear that the solid waste quantity and composition (or component) is different in all societies, both in developing countries (e.g. Indonesia) and developed countries (e.g. Australia). Wahono, and Sahwan (1998), for example, state that the major compositions of solid wastes in major Indonesian cities (e.g. Jakarta, Bandung, and Semarang) are organic materials. This is supported by Tchobanoglous, et al. (1993) who mention that the distribution of components of residential municipal solid waste is typically different among countries, whereas developing countries produce more organic wastes than developed countries. Similarly, in companies or industries, the major composition of solid wastes is paper and paperboard wastes.
Clearly, there are many factors affecting the differences on solid waste composition. According to Bilitewski, et al. (1996, 3), these differences are caused by many factors, such as “level of consumption, production and packaging; standard of living; type of residence (yard space; degree of self-sufficiency); local conditions; and type and capacity of waste and recyclables containers.” Additionally, Rhyner, et al. (1995) add that the changes in product design, packaging materials, and buying habits have also changed the waste composition. This is also supported by Gupta, et al. (1998, 101) who found that the waste composition are depend on many factor such as “food habits, cultural tradition, lifestyles, climate and income etc”, which are found across all country around the world.
Obviously, solid wastes resources in all communities’ levels in developing countries (e. g. Indonesia) are quite similar with developed countries (e.g. Australia). In general, sources of solid wastes in a community are defined as “residential, commercial, institutional, industrial, and municipal services” (Tchobanoglous, et al. 1993, 40 and McBean, et al. 1995, 8) and “agricultural, construction and demolition, and treatment and plant sites which are depending on land use and zoning.” (Tchobanoglous, et al. 1993, 40) (see Table 2). Based on this figure, wastes resources in all level of society are generally similar, whereas wastes generation are relatively varied among these resources. For instance, in developed country, such as Australia, wastes are generated from agricultural (e.g. rice husks, macadamia shells, animal slurries, bagasse from sugar cane and timber mill residues), commercial and industrial, and household (BCSE 2005, 3).
Therefore, the main constituents of solid wastes are similar all over the world. However the quantity, the density and the proportion of these wastes generally vary among industries, countries, and communities, depending on the economic development level, geographic location, technology, and social conditions. These differences will lead to different approach on handling these waste problems.
References
Bilitewski, B., G. Hardtle, K. Marek, A. Weissbach, and H. Boeddicker. (1996), Waste Management, Springer, Berlin.
Gottinger, H. W. (1991), Economic Models and Applications of Solid Waste Management, Gordon and Breach Science Publisher, New York.
Gupta, S., and T. G. Lizon. 2004. Technical assistance (co-financed by the Canadian cooperation fund on climate change) to the Republic of Indonesia for the gas generation from waste project. Asian Development Bank. Retrieved September 9, 2006, from http://www.asiandevbank.org/Documents/TARs/INO/tar-ino-36557.pdf
McBean, E. A., F. A. Rovers, and G. J. Farquhar. (1995), Solid Waste Landfill Engineering and Design, Prentice Hall HTR, New Jersey.
Rhyner, C. R., L. J. Schwartz, R. B. Wenger, and M. G. Kohrell. (1995), Waste Management and Resource Recovery, Lewis Publishers, New York.
Tchobanoglous, G., H. Theisen, and S. Vigil. (1993), Integrated Solid Waste Management: Engineering Principles and Management Issues, McGraw-Hill, Inc, New York.
Wahono, S. and F. L. Sahwan. (1998). Indonesia: Solid waste composting trends and projects. BioCycle, 39, 64-68. Retrieved September 9, 2006, from Proquest Academic Research Library Database.
Langganan:
Postingan (Atom)